skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rehmat, Abeera"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Through the semester-long engineering curricula, middle school students complete a series of contextualized challenges that integrate foundational mathematics and science, introduce advanced manufacturing tools (CAD, 3-D printing), and engage students in the engineering design process. Funded by a National Science Foundation (NSF) DRK12 grant, our project is in the process of scaling the curricula in a large urban school district. Over the previous two years, the project has enlisted two cohorts of engineering teachers to implement the curricula in nine middle schools. In addition to understanding whether and how the critical components of the curricula are implemented in diverse school settings, our research team’s fidelity of implementation research investigates contextual factors that help explain why teachers and students engaged with the curricula the way they do. For this line of inquiry, we draw upon the Factor Framework (Century and Cassata, 2014; Century et al. 2012), which provides a comprehensive set of potential factors known to influence implementation of educational innovations. The framework organizes these implementation factors into five categories: characteristics of the innovation, characteristics of individual users, characteristics of the organization, elements of the environment, and networks. After consulting this framework to identify potential factors likely to influence the implementation, we analyzed teacher interview and classroom observation data collected over the course of three semesters of implementation to describe the degree to which various contextual factors either facilitated or limited implementation. Our data indicate three categories of factors influencing implementation: characteristics of the curriculum, characteristics of users (teachers and students), and characteristics of organizations (district, schools). Characteristics of the curriculum that facilitated implementation included features of the curricula and professional development including the perceived effectiveness of the curricula, the adaptability of the curricula, and the degree to which professional learning sessions provided adequate preparation for implementation. Characteristics of teachers identified as facilitating implementation included pedagogical content knowledge, self-efficacy, resourcefulness, and organizational and time management skills. Teachers reported that student interest in the curriculum challenges and STEM, more generally, was another facilitating factor whereas, to varying degrees, disruptive student behavior and students’ lack of foundational mathematics skills were reported as limiting factors. Teachers highlighted specific technological challenges, such as software licensing issues, as limiting factors. Otherwise, we found that teachers generally had sufficient resources to implement the curricula including adequate physical space, technological tools, and supplies. Across teachers and schools, we found that, overall, supportive school and district leadership facilitated implementation. In spite of an overall high level of support in participating schools, we did identify school and district policies with implications for implementation including school-wide scheduling and disciplinary policies that limited instructional time, policies for assigning and moving students among elective courses, and district-wide expectations for assessment and teaching certain additional engineering activities. We believe the findings of this study will be of interest to other researchers and practitioners exploring how engineering education innovations unfold in diverse classrooms and the array of factors that may account for variations in implementation patterns. 
    more » « less
  2. NA (Ed.)
    This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration. 
    more » « less
  3. ABSTRACT Engineering has emerged as a promising context for STEM integration in K‐12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM‐ID engineering course sequence consists of three 18‐week middle school engineering courses. Each of the 6th, 7th, and 8th grade courses integrate science and math with engineering design, enabling students to explore and practice foundational math and science skills in a low‐risk, non‐high‐stakes‐tested environment. This Innovation to Practice paper provides illustrative examples of STEM‐integration through the STEM‐ID curricula, focusing on four key areas: data analysis, measurement, experimental design, and force and motion concepts. Drawing on our project's implementation data, we highlight illustrative examples of STEM integration, in practice, and lessons learned by educators and researchers involved in the project. 
    more » « less
  4. NA (Ed.)
    Biologically inspired design (BID) has gained attention in undergraduate and graduate engineering programs throughout the United States, and more post-secondary institutions are beginning to implement it into their engineering curriculum [1], [2]. However, little has been done to introduce BID concepts more formally into the K-12 curriculum. Consequently, a research study funded by the National Science Foundation focused on developing a BID integrated engineering curriculum for high school students. The curriculum is designed to integrate BID into the engineering design process (EDP) by leveraging analogical design tools that facilitate a transfer of biological strategies to design challenges. This enables students to understand both the engineering problem and the biological system that could be used to inspire design solutions. In this paper, we describe students’ application of BID integration in the engineering design process and their experiences utilizing BID as they solve design challenges. The curriculum was pilot tested in two 9th grade engineering classrooms across two schools during Spring 2022. Data was collected from four groups of students (n=12) enrolled in the engineering courses across two schools. The study includes classroom observations, student artifacts, and student focus groups. We utilized qualitative content analysis, a descriptive approach to analyzing student data [3], [4], to uncover the meaning and presence of text, messages, images, and transcriptions of dialogues [4]. In this study, we aim to capture the evidence of students’ experiences and engagement with BID concepts. The preliminarily findings illustrate that student groups enjoyed BID activities presented in the curriculum as they promoted students’ exploration of biological systems. BID integration allowed students to view nature differently, which some students indicated they had not previously employed for their design solutions. Although some students mentioned BID activities that helped them during the brainstorming phase of the design process, they were unable to explain BID integration in their final design solutions, unless prompted by the teacher. Furthermore, across the student groups, students indicated that prototype and test was the most engaging stage of the EDP since during this stage they were able to test their designs. This research is novel in its focus on understanding high school students’ experiences with the integration of BID in engineering and has important implications for diversifying engineering in K-12 education. 
    more » « less